Moreno, D., Duval, M., Rubio-Jara, S., Panera, J.,  Bahain, J.J., Shao, Q., Pérez-González, A. & Falguères, C.
Quaternary International

ABSTRACT:
In this work, three important Pleistocene sites of the Madrid basin located close to the junction of the Manzanares (PRERESA site) and the Jarama (Valdocarros site and Maresa quarry) rivers have been studied in order to improve the existing chronological framework of the basin and to clarify the geological evolution of these fluvial systems and their relationship with human occupations. To do so, Electron Spin Resonance (ESR) dating was applied to four fossil teeth and nine optically bleached quartz grain samples. Most of the obtained dates are consistent with the existing preliminary age estimates by biostratigraphy, luminescence (OSL and TL) or Amino Acid Racemization (AAR) dating. This ESR dating study suggests an age of Late Middle Pleistocene (early MIS6) for PRERESA site. At the Jarama valley (Valdocarros site and Maresa quarry), the Arganda I unit could be correlated to the MIS 9 and MIS10, the Arganda II unit seems to belong to MIS8 and MIS7 and the Arganda III to the MIS6.

Bahain, J.J., Duval, M., Voinchet, P., Tissoux, H., Falguères, C., Grün, R., Moreno, D., Shao, Q., Tombret, O., Jamet, G., Faivre, J.P., Cliquet, D.
Quaternary International

ABSTRACT:

Tourville-la-Rivière (Normandy, France) is one of the rare Middle Pleistocene palaeoanthropological localities of Northern France. Electron Spin Resonance (ESR) and combined ESR/U-series dating methods were independently applied by different teams on sediments and teeth from this site. The present work provides an overview of this multi-laboratory dating work by integrating a description and discussion of the methodologies employed and results obtained. Results confirm that the ESR/U-series analyses of the teeth are greatly dependent on the U-uptake histories of the dental tissues. Although all teeth come from the same archeological level, the samples analysed by each team display two different patterns for the U-series data. This is most likely related to the different sampling areas selected by each team and may be interpreted as the result of local variations in the geochemical conditions of the surrounding environment. Concerning the ESR dating of optically bleached quartz grains, the use of the multiple centre approach seems crucial when dating such fluvial and fluvio-lacustrine sediments. Our results also confirm the great potential of the Ti-H centre to date late Middle Pleistocene deposits. Despite some (expected) discrepancies related to the independent use of parameters and approaches by the different teams involved in this multi-laboratory study, the whole ESR and ESR/U-series data set collected from Tourville-la-Rivière locality consistently correlates stratigraphic levels D1 to I and associated human occupation to MIS7

Del Val, M., Duval, M., Medialdea, A., Bateman, M.D., Moreno, D., Arriolabengoa, M.,  Aranburu, A. & Iriarte, E.
Quaternary Geochronology, 49, 108-114

ABSTRACT:
Reported here is the first chronostratigraphic study of the Quaternary fluvial terrace deposits of three different valleys (Deba, Nerbioi, Oiartzun) located in the eastern Cantabrian margin (northern Spain), designed to understand long-term fluvial dynamics of this region. Fourteen samples were collected for numerical dating purpose, in the lowest terrace levels from 5 m to 63 m above current river channel. Optically Stimulated Luminescence dating was performed using the SAR protocol. For samples from terraces>20 m above the current river channel, over 20% of measured aliquots were above saturation of the OSL signal. Consequently, only minimum ages could be estimated. Five samples also underwent Electron Spin Resonance (ESR) dating following the Multiple Centre approach. The ESR signals of the Aluminium and Titanium (Ti-Li and Ti-H) centres were systematically measured in each sample. In particular, the ESR signal of the Ti-H centre was strong enough to derive reliable and meaningful dose estimates. Obtained age results range between∼140 and∼400 ka for the terrace levels from +10 to +25 m. They suggest phases of aggradation during MIS 6, MIS 8 and MIS 10, for terrace levels T+10m, T+20m and T+25m, respectively.